Current issue

Advanced Nano-Bio-Materials and Devices – AdvNanoBioMD 2018; Vol 2; Issue 3 is now released. Thank you for all the contributors and reviewers!

Advanced Nano-Bio-Materials and Devices – AdvNanoBioMD 2018; Vol 2; Issue 3

Advanced Nano-Bio-Materials and Devices – AdvNanoBioMD 2018; Vol 2; Issue 3

Hip arthroplasty consists of a series of sequential manipulations, one of them is the femoral neck osteotomy. The position of the implant and the presence of postoperative complications depend on accuracy of this technique implementation. The purpose of the study was to develop a device for the femoral neck osteotomy. The study was designed to investigate the accuracy of the femoral neck osteotomy with use of the developed device. The operational model of the device has been developed. The pilot studies on plastic bones models both in control group and group of comparison were conducted on the basis of Traumatology and Orthopedics Department Voronezh Burdenko State Medical University. The study data demonstrated a higher accuracy of the femoral neck osteotomy in the comparison group. The use of the developed device allows to perform the femoral neck osteotomy with high accuracy, and it also allows to control position of an implant. It can reduce the number of complications and improve the quality of patients’ lives.

The work is devoted to comparative investigation of the structure and adsorption properties of biogenic hydroxyapatite obtained by annealing cattle bones at 800 °С and two types of synthetic hydroxyapatite obtained by chemical precipitation followed by structuring with using carbon nanotubes for one of the powders and drying at 300°С. According to XRD and IR spectroscopy results, for all the studied powder, the presence of crystalline hydroxyapatite was proved. It was established that the morphology of particles and the specific surface area are different for different types of hydroxyapatite (synthetic hydroxyapatite are characterized by formation of a bigger number of large agglomerates in comparison with biogenic hydroxyapatite), whereas the adsorption activity does not depend on the hydroxyapatite origin and is equal to 106-108 mg/g. In the case of synthetic hydroxyapatite, it is provided by developed specific surface area (69.6-70.0 m2/g) of the powder, whereas in the case of biogenic hydroxyapatite, it is associated with a small size of most agglomerates.