Current Issue

Advanced NanoMaterials and Technologies for Energy Sector – AdvNanoEnergy 2019; Vol 3; Issue 2

One-dimensional (1D) nanostructures are generally used to describe large aspect ratio rods, wires, belts and tubes. The 1D ZnO nanostructures have become the focus of research owing to its unique physical and technological significance in fabricating nanoscale devices. When the radial dimension of the 1D ZnO nanostructures decreases to some lengths (for example, the light wavelength, the mean of the free path of the phonon, Bohr radius, etc.) the effect of the quantum mechanics is definitely crucial. With the large ratio of the surface to volume ratio and the confinement of two dimensions, 1D ZnO nanostructures possess the captivating electronic, magnetic, and optical properties. Furthermore, 1D ZnO nanostructure’s large aspect ratio, an ideal candidate for the energy transport material, can conduct the quantum particles (photons, phonons, electrons) to improve the relevant technique applications.

To date, many methods have been developed to synthesize 1D ZnO nanostructures. Therefore, methodologies for achieving 1D ZnO nanostructures are expressed and the relevant potential application for solar cells are also present to highlight the attractive property of 1D ZnO nanostructures.