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Abstract: 

The dependence of electromagnetic transmission through a subwavelength nano-hole in a 
plasmonic layer on angle of incidence is examined here for both p- and s-polarizations.  Calculations 
are carried out for a sampling of incident angles, and the dyadic Greens function method employed 
includes the interference between transmission emanating from the nano-hole and transmission 
directly through the plasmonic screen.  The integral equation formulation employed for the Greens 
function obviates the need for a separate imposition of boundary conditions (and no appeal to ideal 
metallic boundary conditions is involved). Interference fringes cluster about the aperture and flatten to 
uniform transmission far from it. Furthermore, as the incident angle increases, the axis of the relatively 
large central transmission maximum through the nano-hole follows it, accompanied by a spatial 
compression of interference fringe maxima forward of the large central transmission maximum, and a 
spatial thinning of the fringe maxima behind it. For p-polarization, the transmission results show a 
strong increase as the incident angle θ0 increases, mainly in the dominant Ez component 
(notwithstanding a concomitant decrease of the Ex component as θ0 increases). We also find that in 
the case of s-polarization of the incident electromagnetic wave, the transmission decreases as θ0 
increases. These results, for both p- and s-polarizations, are consistent with earlier results for perfect 
metal boundary conditions, although such ideal boundary conditions are not invoked here as we have 
treated the problem of a nano-hole in a semiconductor layer and have determined its electromagnetic 
transmission including the role of its two dimensional plasma. 
 
Keywords: Dyadic Green’s function,  Incident-Angle Dependence, Electromagnetic Wave  
  Transmission, Nano-hole, Thin Plasmonic Semiconductor Layer. 
 

1. Introduction 

In a recent study of electromagnetic wave 
transmission through a nano-hole in a thin, 
smooth, planar plasmonic semiconductor layer 
Fig.2.1, we examined subwavelength transmis-
sion in detail for normal incidence of the wave 
train [1-5]. Our dyadic Green’s function integral 
equation formulation eliminated the need for 
separate, explicit treatment of the boundary 
conditions used in earlier works [6,7]. Other 
important works [8-10] using dyadic Green’s 
functions [11-14] and variational principles 
assumed the layer to be a perfect, ideal metallic 

conductor, whereas our present interest considers 
the layer to be a thin, smooth, planar plasmonic 
semiconductor. 

A plethora of recent theoretical and 
experimental electromagnetic research began 
with the report of extraordinary optical 
transmission by Ebbeson, et al. [15]. Much of this 
work is reviewed by Garcia-Vidal, et al.: ” Light 
Passing Through subwavelength Apertures ”[16], 
and the years since this 2010 review have seen 
further developments, both experimental and 
theoretical. A variety of electromagnetic studies 
have treated apertures that are mostly 
subwavelength (and some not so small) 
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embedded in layers of varying thickness; some 
studies addressed perfect, ideal metallic layers, 
others treated real semiconductor layers involving 
plasmas. Most treated normal incidence, a few 
addressed oblique incidence. A representative list 
of pertinent articles is presented in chronological 
order in the References [17-39]. 

Our earlier work [1] involved the analytic 
determination of the dyadic electromagnetic 
Green's function for the system in closed form, 
facilitating relatively simple calculation of the 
transmitted radiation through both the hole as well 
as through the layer itself for normal incidence. 
Employment of the dyadic Green's function in an 
integral equation formulation automatically 
embedded the roles of the electromagnetic 
boundary conditions and the 2D plasmon in the 
layer (which is "smeared" due to its lateral 
wavenumber dependence), obviating the need for 
separate treatment. In the present paper, we 
employ the same method to analyze 
subwavelength Electromagnetic transmission 
through such a system for non-normal incidence 
[40] of the electromagnetic wave train on the 
nano-hole. In Section 2, we review the appropriate 
dyadic Green's function for the perforated 
plasmonic screen with a subwavelength aperture 
and its application to electromagnetic 
transmission in the construction of the system's 
inverse dielectric tensor, with emphasis on non-
normal incidence. The calculated results for 
various angles of incidence are exhibited in the 
figures of Section 3, and a summary is presented 
in Section 4. 

2. Dyadic Green’s Function and Inverse 
Dielectric Tensor 

Figure 2.1 illustrates a two dimensional 

plasmonic layer (thickness d, embedded at z=0 in 

a three dimensional bulk medium) with a nano-

hole of radius R, area A at the origin of the (x-y) 

plane. The dyadic Green’s function for such a thin 

perforated plasmonic screen with a nano-hole was 

determined as 

(  A
c

i
A D

fs 
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Here, fsĜ  is the dyadic Green’s function for the 

thin plasmonic layer in the absence of the 
subwavelength aperture, and its elements are 

given by (c is the speed of light; Î  is the unit 
dyadic; ω is angular frequency) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.1. Schematic of a two dimensional  plasmonic 

layer (thickness d, embedded at z = 0 in a three 

dimensional bulk medium) with a nanohole of 

radius R, area A at the origin of the (x-y) plane, 

shown with incident, reflected and transmitted wave 

vectors  tr kkk


,,0
 for waves (                    , 

        .           ).  The angle of incidence is θ0 in the  

x-z plane (k0y≡ 0). 
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fs  is the conductivity of the 

full plasmonic sheet and the matrix elements of 
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with              . 

 

While the dyadic Green’s function above 
determines the electromagnetic response to a 
current source, it does not, by itself, describe the 
response to an incident electromagnetic wave 
field. For that, it is necessary to construct the 
inverse dielectric tensor of the system which 
provides the relation between the actual field  
and the impressed (incident) field         . 
Considering that               described above 
already incorporates the role of induced current, it 
provides the system’s response to an externally 
impressed current      alone as 
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in spatial matrix notation.  Bearing in mind that  
( )2()2( ˆ,ˆ D
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D

fs  are the conductivities of the full 2D 

screen and the excluded hole, respectively; see 
Eqns.26, 27 below) 
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and that the incident field      is related to its 
distant current source      by 
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Obviously, this introduces the inverse dielectric 
dyadic/tensor K̂ as 
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in complete analogy to the results[8], [9] of 
references [1] and [2]. 

Thus, we have the actual E


field as 
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Because the conductivities      and      are 
confined to the 2D screen at z = 0 (thickness d) 
they may be written in lateral         and z – repre- 
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in reference [1], see appendices) 

3. Incident Angle Dependence of 
Electromagnetic Wave Transmission Through 
a 2D Plasmonic Layer a Nano-Hole 

The results above are employed here to 

examine the spatial dependence of the 

diffracted/transmitted wave arising from an 

incoming electromagnetic wave at an arbitrary 

angle of incidence,θ0, in the x-z plane of incidence 

( 00 yk ).  Detailed computations are carried out 

for incident angles of 30°, 60° and 80°.  The 

figures below present results (based on 

calculations using Mathematica) for    , 

                        and                          for spatial  

regions defined by z = 300R (intermediate zone) 

and z = 1000R (far zone), with lateral coordinate  

22

// yxr   extension in the range  

3 3 3 4

// 10 2x10 5x10 10r R R nm     for both zones. 

The results are exhibited in 2D line graphs and in 
both 3D and density plots for both p- and s- 
polarizations of the incident wave. In all 
computations represented in these figures, we 
employ the following parameters: R = 5 nm,  
d =10nm and f0 = 300 THz; the semiconductor 

screen is taken to be GaAs with effective mass 

0067.0 mm  (m0 is the free-electron mass) and 

density 321

3 /10x4 cmn D  ( 1)3( D

b  is the dielectric 

constant of the host medium).  In Figures 3.1-3.8,  

we set 0y  and xr //
 varies over the indicated 

zone range, Figures 3.9a-3.18a exhibit 3D plots of 

the transmitted component power distributions, 

while Figures 3.9b-3.18b provide the associated 

component power density plots, all as functions of 

both x and y for the fixed z-values indicated 

above. 
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Fig.3.1. p – polarization - Middle-Field, Rz 300 ; 
0

0 30 : (a)   2

0;,, EtzyxEx
 and (b)   2

0;,, EtzyxEz
 

produced by a perforated 2D plasmonic layer of GaAs 

as a function of lateral distance )0(//  yxr  from the 

aperture. 
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p - polarization: Middle-Field, 60;300 0  Rz  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

Fig.3.2. p - polarization-Middle - Field, Rz 300 ; 

0

0 60 : (a)   2

0;,, EtzyxEx
 and (b)   2

0;,, EtzyxEz
 

produced by a perforated 2D plasmonic layer of GaAs 

as a function of lateral distance )0(//  yxr  from the 

aperture. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

p - polarization: Middle-Field, 80;300 0  Rz  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
Fig.3.3. p – polarization - Middle-Field, Rz 300 ; 

0

0 80 : (a)   2

0;,, EtzyxEx
 and (b)   2

0;,, EtzyxEz
 

produced by a perforated 2D plasmonic layer of GaAs 

as a function of lateral distance )0(//  yxr  from the 

aperture. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 

(b) 

(b) 

(a) 



 
Désiré Miessein, Norman J. M. Horing, Harry Lenzing, Godfrey Gumbs 

Incident-Angle Dependence of EM Transmission Through a plasmonic Screen with a Nano-Aperture 

AdvNanoBioM&D: 2017: 1(1):54-70    ISSN: 2559-1118   59 

s - polarization: Middle-Field, Rz 300  

 
Fig.3.4. s - polarization-Middle - Field, Rz 300 ; 

 
2

0;,, EtzyxEy
: (a) 0

0 30 , (b) 0

0 60  and (c) 

0

0 80  produced by a perforated 2D plasmonic layer 

of GaAs as a function of lateral distance )0(//  yxr  

from the aperture. 
 

 

p - polarization: Far - Field, 30;1000 0  Rz  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3.5. p – polarization - Far-Field, Rz 1000 ; 

0

0 30 : (a)   2

0;,, EtzyxEx
 and (b)   2

0;,, EtzyxEz
 

produced by a perforated 2D plasmonic layer of GaAs 

as a function of lateral distance )0(//  yxr  from the 

aperture. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) 

(b) 

(a) 
(a) 

(b) 



 
Désiré Miessein, Norman J. M. Horing, Harry Lenzing, Godfrey Gumbs 

Incident-Angle Dependence of EM Transmission Through a plasmonic Screen with a Nano-Aperture 

AdvNanoBioM&D: 2017: 1(1):54-70    ISSN: 2559-1118   60 

p - polarization: Far - Field, 60;1000 0  Rz  

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3.6. p – polarization - Far-Field, Rz 1000 ; 

0

0 60 : (a)   2

0;,, EtzyxEx
 and (b)   2

0;,, EtzyxEz
 

produced by a perforated 2D plasmonic layer of GaAs 

as a function of lateral distance )0(//  yxr  from the 

aperture. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

p - polarization: Far - Field, 80;1000 0  Rz  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3.7. p – polarization - Far-Field, Rz 1000 ; 

0

0 80 : (a)   2

0;,, EtzyxEx
 and (b)   2

0;,, EtzyxEz
 

produced by a perforated 2D plasmonic layer of GaAs 

as a function of lateral distance )0(//  yxr  from the 

aperture. 
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s - polarization: Far - Field, Rz 1000  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3.8. s - polarization-Middle - Field, Rz 1000 ; 

 
2

0;,, EtzyxEy
: (a) 0

0 30 , (b) 0

0 60  and (c) 

0

0 80  produced by a perforated 2D plasmonic 

layer of GaAs as a function of lateral distance 

)0(//  yxr  from the aperture. 

 

 

p - polarization: Middle-Field, 30;300 0  Rz  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

      

      

      

      

    

 

 

 

 

 

 

 

 

 

 

      

      

      

      

    

 

 

 

 

 

Fig. 3.9.  p - polarization: Middle-Field, 
0

0 30;300  Rz  -  

Field  distribution of GaAs layer in terms of 3D (a’s) and density 

(b’s) plots:   2

0;,, EtzyxEx
 and   2

0;,, EtzyxEz
 as 

functions of x and y for fixed z. 

(a) 

(c) 

(b) 
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p - polarization: Middle-Field, 60;300 0  Rz  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.10.  p - polarization: Middle-Field, 60;300 0  Rz  -  

Field  distribution of GaAs layer in terms of 3D (a’s) and density 

(b’s) plots:   2

0;,, EtzyxEx
 and   2

0;,, EtzyxEz
 as 

functions of x and y for fixed z. 

p - polarization: Middle-Field, 80;300 0  Rz  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.11.  p - polarization: Middle-Field, 80;300 0  Rz  -  

Field  distribution of GaAs layer in terms of 3D (a’s) and density 

(b’s) plots:   2

0;,, EtzyxEx
 and   2

0;,, EtzyxEz
 as 

functions of x and y for fixed z. 



 
Désiré Miessein, Norman J. M. Horing, Harry Lenzing, Godfrey Gumbs 

Incident-Angle Dependence of EM Transmission Through a plasmonic Screen with a Nano-Aperture 

AdvNanoBioM&D: 2017: 1(1):54-70    ISSN: 2559-1118   63 

s - polarization: Middle-Field, Rz 300  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Fig.3.12. s - polarization: Middle-Field, Rz 300 - Field 

distribution of GaAs layer in terms of 3D (a’s) and density 

(b’s) plots:  
2

0;,, EtzyxE y
 (a) 0

0 60,30  and   

(b) 0

0 60,30  as functions of x and y for fixed z. 

s - polarization: Middle-Field, Rz 300  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.3.13. s - polarization: Middle-Field, Rz 300 - 

Field distribution of GaAs layer in terms of 3D (a’s) 

and density (b’s) plots:  
2

0;,, EtzyxE y
 (a) ,800

  

and  (b) 
0

0 80  as functions of x and y for fixed z. 
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p - polarization: Far-Field, 30;1000 0  Rz  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.3.14.  p - polarization: Far-Field, 
30;10 0

3  Rz  -  

Field  distribution of GaAs layer in terms of 3D (a’s) and 

density (b’s) plots:   2

0;,, EtzyxEx
 and    2

0;,, EtzyxEz
 

as functions of x and y for fixed z. 

p - polarization: Far-Field, 60;1000 0  Rz  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.15.  p - polarization: Far-Field, 
60;10 0

3  Rz -  

Field  distribution of GaAs layer in terms of 3D (a’s) and 

density (b’s) plots:   2

0;,, EtzyxEx
 and   2

0;,, EtzyxEz
 

as functions of x and y for fixed z. 
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p - polarization: Far-Field, 80;1000 0  Rz  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.3.16.  p - polarization: Far-Field, 80;10 0

3  Rz  -  

Field  distribution of GaAs layer in terms of 3D (a’s) and 

density (b’s) plots:   2

0;,, EtzyxEx
 and   2

0;,, EtzyxEz
 

as functions of x and y for fixed z. 

s - polarization: Far-Field, ;1000Rz   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig.3.17. s - polarization: Far-Field, Rz 310 - Field 

distribution of GaAs layer in terms of 3D (a’s) and density (b’s) 

plots:  
2

0;,, EtzyxE y
(a) 0

0 60,30  and (b) 

0

0 60,30  as functions of x and y for fixed z. 
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s - polarization: Far-Field, ;1000Rz   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.18. s - polarization: Far-Field, Rz 310 - Field 

distribution of GaAs layer in terms of 3D (a’s) and 

density (b’s) plots:  
2

0;,, EtzyxE y
(a) 

0

0 80  and 

(b) 
0

0 80  as functions of x and y for fixed z 

4. Conclusions 

In this work we have explored the role of 
non-normal angles of incidence on the 
transmission of an electromagnetic wave train 
through a nano-hole in a thin plasmonic 
semiconductor screen. This study is based on our 
previously constructed [1-5] closed-form dyadic 
electromagnetic Green’s function for a thin 
plasmonic/excitonic layer adapted to embody a 
nano-hole. The resulting closed-form dyadic 
Green’s function encompasses electromagnetic 
wave transmission through both the hole as well 
as through the screen itself. This analytic 
approach involving closed-form solutions of 
associated integral equations has facilitated the 
relatively simple numerical computations exhibited 
above, and is not in any way restricted to an ideal 
metallic screen.  Moreover, our formulation, which 
is based on the use of an integral equation for the 
dyadic Green’s function involved automatically 
incorporates the boundary conditions, 

which would otherwise need to be addressed 
explicitly.  It also incorporates the role of the two 
dimensional plasmon of the thin layer, which is 
smeared by its lateral wavenumber dependence. 

The calculated results shown in the 
figures of Section III contrast sharply with the 
corresponding figures for normal incidence.  Even 
for the lowest incident angle of 30

0 
 considered in 

the case of p-polarization, the results are highly 
asymmetric in x (while the corresponding results 
for normal incidence are symmetric) [1]. Such 
strong asymmetry persists at higher angles of 
incidence considered (60

o 
; 80

o
), as may be seen 

in Figs.3.1-3.8 for p-polarization and s-
polarization.   Further supporting 3D and density 

plots are given in Figs.3.9 - 3.18 for the various 
angles of incidence and polarizations in the spatial 
zones considered. 

All of the figures exhibit interference 
fringes due to the superposition of the field 
transmitted through the nano-hole with the field 
transmitted directly through the plasmonic sheet.  
At large distances from the nano-hole, the 
transmission directly through the plasmonic sheet 
dominates, and the interference fringes flatten to a 
uniform level of transmission through the sheet 
alone, with the nano-hole contribution negligible. 

Finally, it should be noted that the figures 
show that as the incident angle increases, the axis 
of the relatively large central transmission 
maximum follows it generating greater asymmetry 
accompanied by a spatial compression of 
interference fringe maxima forward of the large 
central transmission maximum and a spatial 
thinning of the fringe maxima behind it. Moreover, 
while there is strong asymmetry of 
electromagnetic transmission with respect to the 
x-axis (of the x - z plane of incidence), it should be 
borne in mind that the transmission is fully 
symmetric with respect to the y-axis (normal to the 
plane of incidence).  Furthermore, the p-
polarization transmission results show strong 

increase as incident angle 0  increases, mainly in 

the zE  component. 

 

Appendix A: Matrix Elements of 
1ˆ  and  

The elements of 
1ˆ   are given by 

(notation: dikka zz 222

0   ) 

 ;0,;ˆ
//3 zkG D
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Appendix B: 

Furthermore the elements of  ;0,;ˆ
//3 zkG D


 

are given by the matrix  ;0,;//3 zkGij

D


 as: 
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Therefore, Eq.(16) may be rewritten as  
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It should be noted that, in the text above, we 
choose the coordinate system such that 0yk .  In 

this case 
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 becomes diagonal. 
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where the matrix elements are given by 
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In order to facilitate the calculations of the above 
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